Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 242(2): 289-311, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36206401

RESUMO

In vertebrates, active movement is driven by muscle forces acting on bones, either directly or through tendinous insertions. There has been much debate over how muscle size and force are reflected by the muscular attachment areas (AAs). Here we investigate the relationship between the physiological cross-sectional area (PCSA), a proxy for the force production of the muscle, and the AA of hindlimb muscles in Nile crocodiles and five bird species. The limbs were held in a fixed position whilst blunt dissection was carried out to isolate the individual muscles. AAs were digitised using a point digitiser, before the muscle was removed from the bone. Muscles were then further dissected and fibre architecture was measured, and PCSA calculated. The raw measures, as well as the ratio of PCSA to AA, were studied and compared for intra-observer error as well as intra- and interspecies differences. We found large variations in the ratio between AAs and PCSA both within and across species, but muscle fascicle lengths are conserved within individual species, whether this was Nile crocodiles or tinamou. Whilst a discriminant analysis was able to separate crocodylian and avian muscle data, the ratios for AA to cross-sectional area for all species and most muscles can be represented by a single equation. The remaining muscles have specific equations to represent their scaling, but equations often have a relatively high success at predicting the ratio of muscle AA to PCSA. We then digitised the muscle AAs of Coelophysis bauri, a dinosaur, to estimate the PCSAs and therefore maximal isometric muscle forces. The results are somewhat consistent with other methods for estimating force production, and suggest that, at least for some archosaurian muscles, that it is possible to use muscle AA to estimate muscle sizes. This method is complementary to other methods such as digital volumetric modelling.


Assuntos
Extremidade Inferior , Músculo Esquelético , Animais , Músculo Esquelético/fisiologia , Vertebrados , Osso e Ossos , Membro Posterior
2.
J Anat ; 241(1): 101-118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35118654

RESUMO

The last common ancestor of birds and crocodylians plus all of its descendants (clade Archosauria) dominated terrestrial Mesozoic ecosystems, giving rise to disparate body plans, sizes, and modes of locomotion. As in the fields of vertebrate morphology and paleontology more generally, studies of archosaur skeletal structure have come to depend on tools for acquiring, measuring, and exploring three-dimensional (3-D) digital models. Such models, in turn, form the basis for many analyses of musculoskeletal function. A set of shared conventions for describing 3-D pose (joint or limb configuration) and 3-D kinematics (change in pose through time) is essential for fostering comparison of posture/movement among such varied species, as well as for maximizing communication among scientists. Following researchers in human biomechanics, we propose a standard methodological approach for measuring the relative position and orientation of the major segments of the archosaur pelvis and hindlimb in 3-D. We describe the construction of anatomical and joint coordinate systems using the extant guineafowl and alligator as examples. Our new standards are then applied to three extinct taxa sampled from the wider range of morphological, postural, and kinematic variation that has arisen across >250 million years of archosaur evolution. These proposed conventions, and the founding principles upon which they are based, can also serve as starting points for measuring poses between elements within a hindlimb segment, for establishing coordinate systems in the forelimb and axial skeleton, or for applying our archosaurian system more broadly to different vertebrate clades.


Assuntos
Jacarés e Crocodilos , Evolução Biológica , Jacarés e Crocodilos/anatomia & histologia , Animais , Fenômenos Biomecânicos , Ecossistema , Membro Posterior/anatomia & histologia , Humanos , Extremidade Inferior , Vertebrados
3.
Anat Rec (Hoboken) ; 305(10): 2435-2462, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34841701

RESUMO

Pseudosuchians, archosaurian reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic with numerous examples of morphological convergence described between Triassic pseudosuchians and post-Triassic dinosaurs. One example is the shuvosaurid Effigia okeeffeae which exhibits an "ostrich-like" bauplan comprising a gracile skeleton with edentulous jaws and large orbits, similar to ornithomimid dinosaurs and extant palaeognaths. This bauplan is regarded as an adaptation for herbivory, but this hypothesis assumes morphological convergence confers functional convergence, and has received little explicit testing. Here, we restore the skull morphology of Effigia, perform myological reconstructions, and apply finite element analysis to quantitatively investigate skull function. We also perform finite element analysis on the crania of the ornithomimid dinosaur Ornithomimus edmontonicus, the extant palaeognath Struthio camelus and the extant pseudosuchian Alligator mississippiensis to assess the degree of functional convergence with a taxon that exhibit "ostrich-like" bauplans and its closest extant relatives. We find that Effigia possesses a mosaic of mechanically strong and weak features, including a weak mandible that likely restricted feeding to the anterior portion of the jaws. We find limited functional convergence with Ornithomimus and Struthio and limited evidence of phylogenetic constraints with extant pseudosuchians. We infer that Effigia was a specialist herbivore that likely fed on softer plant material, a niche unique among the study taxa and potentially among contemporaneous Triassic herbivores. This study increases the known functional diversity of pseudosuchians and highlights that superficial morphological similarity between unrelated taxa does not always imply functional and ecological convergence.


Assuntos
Jacarés e Crocodilos , Dinossauros , Struthioniformes , Jacarés e Crocodilos/anatomia & histologia , Animais , Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis , Filogenia , Crânio/anatomia & histologia
4.
PLoS Comput Biol ; 17(4): e1008843, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793558

RESUMO

The arrangement and physiology of muscle fibres can strongly influence musculoskeletal function and whole-organismal performance. However, experimental investigation of muscle function during in vivo activity is typically limited to relatively few muscles in a given system. Computational models and simulations of the musculoskeletal system can partly overcome these limitations, by exploring the dynamics of muscles, tendons and other tissues in a robust and quantitative fashion. Here, a high-fidelity, 26-degree-of-freedom musculoskeletal model was developed of the hindlimb of a small ground bird, the elegant-crested tinamou (Eudromia elegans, ~550 g), including all the major muscles of the limb (36 actuators per leg). The model was integrated with biplanar fluoroscopy (XROMM) and forceplate data for walking and running, where dynamic optimization was used to estimate muscle excitations and fibre length changes throughout both gaits. Following this, a series of static simulations over the total range of physiological limb postures were performed, to circumscribe the bounds of possible variation in fibre length. During gait, fibre lengths for all muscles remained between 0.5 to 1.21 times optimal fibre length, but operated mostly on the ascending limb and plateau of the active force-length curve, a result that parallels previous experimental findings for birds, humans and other species. However, the ranges of fibre length varied considerably among individual muscles, especially when considered across the total possible range of joint excursion. Net length change of muscle-tendon units was mostly less than optimal fibre length, sometimes markedly so, suggesting that approaches that use muscle-tendon length change to estimate optimal fibre length in extinct species are likely underestimating this important parameter for many muscles. The results of this study clarify and broaden understanding of muscle function in extant animals, and can help refine approaches used to study extinct species.


Assuntos
Simulação por Computador , Extinção Biológica , Membro Posterior/fisiologia , Locomoção , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Paleógnatas/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Membro Posterior/anatomia & histologia , Tendões/fisiologia
5.
J Anat ; 239(2): 424-444, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33754362

RESUMO

We developed a three-dimensional, computational biomechanical model of a juvenile Nile crocodile (Crocodylus niloticus) pelvis and hindlimb, composed of 47 pelvic limb muscles, to investigate muscle function. We tested whether crocodiles, which are known to use a variety of limb postures during movement, use limb orientations (joint angles) that optimise the moment arms (leverages) or moment-generating capacities of their muscles during different limb postures ranging from a high walk to a sprawling motion. We also describe the three-dimensional (3D) kinematics of the crocodylian hindlimb during terrestrial locomotion across an instrumented walkway and a treadmill captured via X-ray Reconstruction of Moving Morphology (biplanar fluoroscopy; 'XROMM'). We reconstructed the 3D positions and orientations of each of the hindlimb bones and used dissection data for muscle lines of action to reconstruct a focal, subject-specific 3D musculoskeletal model. Motion data for different styles of walking (a high, crouched, bended and two types of sprawling motion) were fed into the 3D model to identify whether any joints adopted near-optimal poses for leverage across each of the behaviours. We found that (1) the hip adductors and knee extensors had their largest leverages during sprawling postures and (2) more erect postures typically involved greater peak moment arms about the hip (flexion-extension), knee (flexion) and metatarsophalangeal (flexion) joints. The results did not fully support the hypothesis that optimal poses are present during different locomotory behaviours because the peak capacities were not always reached around mid-stance phase. Furthermore, we obtained few clear trends for isometric moment-generating capacities. Therefore, perhaps peak muscular leverage in Nile crocodiles is instead reached either in early/late stance or possibly during swing phase or other locomotory behaviours that were not studied here, such as non-terrestrial movement. Alternatively, our findings could reflect a trade-off between having to execute different postures, meaning that hindlimb muscle leverage is not optimised for any singular posture or behaviour. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in extant crocodiles which can form a basis for investigating muscle function in extinct archosaurs.


Assuntos
Jacarés e Crocodilos/fisiologia , Membro Posterior/fisiologia , Locomoção , Modelos Biológicos , Músculo Esquelético/fisiologia , Jacarés e Crocodilos/anatomia & histologia , Animais , Feminino , Amplitude de Movimento Articular
6.
PLoS Biol ; 18(8): e3000801, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810126

RESUMO

The evolutionary radiation of birds has produced incredible morphological variation, including a huge range of skull form and function. Investigating how this variation arose with respect to non-avian dinosaurs is key to understanding how birds achieved their remarkable success after the Cretaceous-Paleogene extinction event. Using a high-dimensional geometric morphometric approach, we quantified the shape of the skull in unprecedented detail across 354 extant and 37 extinct avian and non-avian dinosaurs. Comparative analyses reveal fundamental differences in how skull shape evolved in birds and non-avian dinosaurs. We find that the overall skull shape evolved faster in non-avian dinosaurs than in birds across all regions of the cranium. In birds, the anterior rostrum is the most rapidly evolving skull region, whereas more posterior regions-such as the parietal, squamosal, and quadrate-exhibited high rates in non-avian dinosaurs. These fast-evolving elements in dinosaurs are strongly associated with feeding biomechanics, forming the jaw joint and supporting the jaw adductor muscles. Rapid pulses of skull evolution coincide with changes to food acquisition strategies and diets, as well as the proliferation of bony skull ornaments. In contrast to the appendicular skeleton, which has been shown to evolve more rapidly in birds, avian cranial morphology is characterised by a striking deceleration in morphological evolution relative to non-avian dinosaurs. These results may be due to the reorganisation of skull structure in birds-including loss of a separate postorbital bone in adults and the emergence of new trade-offs with development and neurosensory demands. Taken together, the remarkable cranial shape diversity in birds was not a product of accelerated evolution from their non-avian relatives, despite their frequent portrayal as an icon of adaptive radiations.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Crânio/anatomia & histologia , Animais , Fenômenos Biomecânicos , Aves/classificação , Aves/fisiologia , Dinossauros/classificação , Dinossauros/fisiologia , Extinção Biológica , Comportamento Alimentar/fisiologia , Fósseis/anatomia & histologia , Filogenia , Crânio/fisiologia
7.
J Avian Med Surg ; 34(1): 17-25, 2020 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-32237678

RESUMO

The aim of this study was to describe the anesthetic effects of an injectable anesthetic protocol, based on ketamine, midazolam, and medetomidine, followed by inhalational sevoflurane, in 8 elegant-crested tinamous (Eudromia elegans) undergoing experimental surgery. Initial doses for both injectable agents were tested in 1 bird and then refined with an algorithm based on the effects observed in the pilot procedure. Heart and respiratory rates, as well as nociceptive reflexes, were evaluated before anesthesia (baseline) and intraoperatively, at 10 minute intervals. The time from injection to anesthetic induction and surgical anesthesia, as well as the time from atipamezole injection to recovery, was recorded for each bird. The median doses of medetomidine and ketamine were 0.075 mg/kg and 33 mg/kg, respectively. Anesthetic induction was achieved within 10 (range, 4-45) minutes from intramuscular injection, whereas time to surgical anesthesia was 22 ±16 minutes. The baseline heart rate values were significantly higher than those measured intraoperatively at any time point (P = .001). Intraoperatively, 5 of 8 tinamous (63%) developed cardiac arrhythmias. Other encountered complications were regurgitation in 2 birds (25%), cardiac arrest in 1 bird (13%) soon after injection of the anesthetic agents, and prolonged recovery in another bird (13%), which was euthanized. Necropsy of the 2 fatal outcomes (25%) showed evidence of hepatic lipidosis in both (100%) and intramyocardial fat accumulation in 1 bird (50%). This report highlights the challenges of tinamou anesthesia. Cardiac complications are common in this species, and close monitoring of intraoperative cardiovascular variables is recommended for prompt recognition and treatment.


Assuntos
Anestesia/veterinária , Anestésicos/administração & dosagem , Aves/fisiologia , Anestésicos/efeitos adversos , Anestésicos Inalatórios/administração & dosagem , Animais , Feminino , Injeções Intramusculares/veterinária , Complicações Intraoperatórias/induzido quimicamente , Complicações Intraoperatórias/veterinária , Ketamina/administração & dosagem , Masculino , Medetomidina/administração & dosagem , Midazolam/administração & dosagem , Sevoflurano/administração & dosagem
8.
Integr Comp Biol ; 59(2): 371-382, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31120528

RESUMO

Complex structures, like the vertebrate skull, are composed of numerous elements or traits that must develop and evolve in a coordinated manner to achieve multiple functions. The strength of association among phenotypic traits (i.e., integration), and their organization into highly-correlated, semi-independent subunits termed modules, is a result of the pleiotropic and genetic correlations that generate traits. As such, patterns of integration and modularity are thought to be key factors constraining or facilitating the evolution of phenotypic disparity by influencing the patterns of variation upon which selection can act. It is often hypothesized that selection can reshape patterns of integration, parceling single structures into multiple modules or merging ancestrally semi-independent traits into a strongly correlated unit. However, evolutionary shifts in patterns of trait integration are seldom assessed in a unified quantitative framework. Here, we quantify patterns of evolutionary integration among regions of the archosaur skull to investigate whether patterns of cranial integration are conserved or variable across this diverse group. Using high-dimensional geometric morphometric data from 3D surface scans and computed tomography scans of modern birds (n = 352), fossil non-avian dinosaurs (n = 27), and modern and fossil mesoeucrocodylians (n = 38), we demonstrate that some aspects of cranial integration are conserved across these taxonomic groups, despite their major differences in cranial form, function, and development. All three groups are highly modular and consistently exhibit high integration within the occipital region. However, there are also substantial divergences in correlation patterns. Birds uniquely exhibit high correlation between the pterygoid and quadrate, components of the cranial kinesis apparatus, whereas the non-avian dinosaur quadrate is more closely associated with the jugal and quadratojugal. Mesoeucrocodylians exhibit a slightly more integrated facial skeleton overall than the other grades. Overall, patterns of trait integration are shown to be stable among archosaurs, which is surprising given the cranial diversity exhibited by the clade. At the same time, evolutionary innovations such as cranial kinesis that reorganize the structure and function of complex traits can result in modifications of trait correlations and modularity.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Evolução Biológica , Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Crânio/anatomia & histologia , Animais , Fenótipo
9.
Sci Rep ; 9(1): 7614, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110190

RESUMO

Ontogenetic information is crucial to understand life histories and represents a true challenge in dinosaurs due to the scarcity of growth series available. Mussaurus patagonicus was a sauropodomorph dinosaur close to the origin of Sauropoda known from hatchling, juvenile and mature specimens, providing a sufficiently complete ontogenetic series to reconstruct general patterns of ontogeny. Here, in order to quantify how body shape and its relationship with locomotor stance (quadruped/biped) changed in ontogeny, hatchling, juvenile (~1 year old) and adult (8+ years old) individuals were studied using digital models. Our results show that Mussaurus rapidly grew from about 60 g at hatching to ~7 kg at one year old, reaching >1000 kg at adulthood. During this time, the body's centre of mass moved from a position in the mid-thorax to a more caudal position nearer to the pelvis. We infer that these changes of body shape and centre of mass reflect a shift from quadrupedalism to bipedalism occurred early in ontogeny in Mussaurus. Our study indicates that relative development of the tail and neck was more influential in determining the locomotor stance in Sauropodomorpha during ontogeny, challenging previous studies, which have emphasized the influence of hindlimb vs. forelimb lengths on sauropodomorph stance.


Assuntos
Tamanho Corporal/genética , Tamanho Corporal/fisiologia , Dinossauros/genética , Dinossauros/fisiologia , Locomoção/genética , Locomoção/fisiologia , Animais , Evolução Biológica , Osso e Ossos/fisiologia , Membro Anterior/fisiologia , Fósseis , Ontologia Genética , Membro Posterior/fisiologia
10.
J Morphol ; 280(5): 666-680, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30847966

RESUMO

Electromyography (EMG) is used to understand muscle activity patterns in animals. Understanding how much variation exists in muscle activity patterns in homologous muscles across animal clades during similar behaviours is important for evaluating the evolution of muscle functions and neuromuscular control. We compared muscle activity across a range of archosaurian species and appendicular muscles, including how these EMG patterns varied across ontogeny and phylogeny, to reconstruct the evolutionary history of archosaurian muscle activation during locomotion. EMG electrodes were implanted into the muscles of turkeys, pheasants, quail, guineafowl, emus (three age classes), tinamous and juvenile Nile crocodiles across 13 different appendicular muscles. Subjects walked and ran at a range of speeds both overground and on treadmills during EMG recordings. Anatomically similar muscles such as the lateral gastrocnemius exhibited similar EMG patterns at similar relative speeds across all birds. In the crocodiles, the EMG signals closely matched previously published data for alligators. The timing of lateral gastrocnemius activation was relatively later within a stride cycle for crocodiles compared to birds. This difference may relate to the coordinated knee extension and ankle plantarflexion timing across the swing-stance transition in Crocodylia, unlike in birds where there is knee flexion and ankle dorsiflexion across swing-stance. No significant effects were found across the species for ontogeny, or between treadmill and overground locomotion. Our findings strengthen the inference that some muscle EMG patterns remained conservative throughout Archosauria: for example, digital flexors retained similar stance phase activity and M. pectoralis remained an 'anti-gravity' muscle. However, some avian hindlimb muscles evolved divergent activations in tandem with functional changes such as bipedalism and more crouched postures, especially M. iliotrochantericus caudalis switching from swing to stance phase activity and M. iliofibularis adding a novel stance phase burst of activity.


Assuntos
Aves/anatomia & histologia , Extinção Biológica , Extremidades/anatomia & histologia , Extremidades/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Junção Neuromuscular/fisiologia , Répteis/anatomia & histologia , Animais , Aves/fisiologia , Eletromiografia , Répteis/fisiologia , Processamento de Sinais Assistido por Computador , Fatores de Tempo
11.
Vet Anaesth Analg ; 46(1): 84-89, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30528216

RESUMO

OBJECTIVE: To describe the anaesthetic, physiological and side effects of intramuscular (IM) medetomidine and ketamine, followed by inhalational anaesthesia with sevoflurane, in Nile crocodiles (Crocodylus niloticus). STUDY DESIGN: Observational trial. ANIMALS: Ten juvenile captive-bred Nile crocodiles undergoing surgical implantation of skeletal beads and muscular electrodes. METHODS: During preanaesthetic examination, the following variables were assessed: heart (HR) and respiratory (fR) rates, and response to palpebral, corneal and toe- and tail-pinch withdrawal reflexes. The crocodiles were injected IM with an initial combination of medetomidine and ketamine and re-evaluated at 5 minute intervals for 20 minutes, or until they appeared unresponsive. If that did not occur, the drugs were redosed according to a decision tree based on the observed effects. The righting, biting and palatal valve reflexes were assessed in the unresponsive crocodiles, and used to confirm anaesthetic induction. Anaesthesia was maintained with sevoflurane in oxygen. At the end of surgery, medetomidine was antagonized with IM atipamezole. RESULTS: The decision tree identified 0.3 mg kg-1 medetomidine and 15 mg kg-1 ketamine as a useful drug combination, which resulted in anaesthetic induction and surgical anaesthesia 16 ± 8 and 16 (25-20) minutes after injection, respectively. Compared to baseline, HR and fR significantly decreased after anaesthetic induction (p < 0.001), but then remained stable throughout surgery. Intraoperatively, cloacal temperature [27 (26-30) °C] did not change over time (p = 0.48). The total dose of atipamezole was 2 (1-3) mg kg-1 and time to recovery was 36 (20-60) minutes. Perioperative complications were not observed. CONCLUSIONS: and clinical relevance Medetomidine and ketamine, injected IM and followed by sevoflurane anaesthesia, may be regarded as a useful anaesthetic technique for juvenile Nile crocodiles undergoing minimally invasive experimental surgery.


Assuntos
Jacarés e Crocodilos/fisiologia , Anestesia/veterinária , Anestésicos Inalatórios/farmacologia , Hipnóticos e Sedativos/farmacologia , Ketamina/farmacologia , Medetomidina/farmacologia , Medição da Dor/veterinária , Sevoflurano/farmacologia , Anestésicos Combinados , Anestésicos Inalatórios/administração & dosagem , Animais , Feminino , Hipnóticos e Sedativos/administração & dosagem , Ketamina/administração & dosagem , Medetomidina/administração & dosagem , Medição da Dor/efeitos dos fármacos , Sevoflurano/administração & dosagem
12.
J Anat ; 229(1): 128-41, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27074986

RESUMO

The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300-fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle-tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross-sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength is consistent with behavioural changes in larger felids, such as a reduction of maximal speed and other aspects of locomotor abilities.


Assuntos
Felidae/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Animais , Músculos do Dorso/anatomia & histologia , Biometria , Tamanho Corporal , Feminino , Membro Anterior/anatomia & histologia , Masculino , Análise de Componente Principal
13.
J Anat ; 229(1): 142-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27080703

RESUMO

In quadrupeds the musculature of the hindlimbs is expected to be responsible for generating most of the propulsive locomotory forces, as well as contributing to body support by generating vertical forces. In supporting the body, postural changes from crouched to upright limbs are often associated with an increase of body mass in terrestrial tetrapods. However, felids do not change their crouched limb posture despite undergoing a 300-fold size increase between the smallest and largest extant species. Here, we test how changes in the muscle architecture (masses and lengths of components of the muscle-tendon units) of the hindlimbs and lumbosacral region are related to body mass, to assess whether there are muscular compensations for the maintenance of a crouched limb posture at larger body sizes. We use regression and principal component analyses to detect allometries in muscle architecture, with and without phylogenetic correction. Of the muscle lengths that scale allometrically, all scale with negative allometry (i.e. relative shortening with increasing body mass), whereas all tendon lengths scale isometrically. Only two muscles' belly masses and two tendons' masses scale with positive allometry (i.e. relatively more massive with increasing body mass). Of the muscles that scale allometrically for physiological cross-sectional area, all scale positively (i.e. relatively greater area with increasing body mass). These muscles are mostly linked to control of hip and thigh movements. When the architecture data are phylogenetically corrected, there are few significant results, and only the strongest signals remain. None of the vertebral muscles scaled significantly differently from isometry. Principal component analysis and manovas showed that neither body size nor locomotor mode separate the felid species in morphospace. Our results support the inference that, despite some positively allometric trends in muscle areas related to thigh movement, larger cats have relatively weaker hindlimb and lumbosacral muscles in general. This decrease in power may be reflected in relative decreases in running speeds and is consistent with prevailing evidence that behavioural changes may be the primary mode of compensation for a consistently crouched limb posture in larger cats.


Assuntos
Felidae/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Animais , Músculos do Dorso/anatomia & histologia , Biometria , Tamanho Corporal , Feminino , Membro Posterior/anatomia & histologia , Masculino , Análise de Componente Principal
14.
Brain Behav Evol ; 88(3-4): 213-221, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28092905

RESUMO

The extinct North American lion (Panthera atrox) is one of the largest felids (Mammalia, Carnivora) to have ever lived, and it is known from a plethora of incredibly well-preserved remains. Despite this abundance of material, there has been little research into its endocranial anatomy. CT scans of a skull of P. atrox from the Pleistocene La Brea Tar pits were used to generate the first virtual endocranium for this species and to elucidate previously unknown details of its brain size and gross structure, cranial nerves, and inner-ear morphology. Results show that its gross brain anatomy is broadly similar to that of other pantherines, although P. atrox displays less cephalic flexure than either extant lions or tigers, instead showing a brain shape that is reminiscent of earlier felids. Despite this unusual reduction in flexure, the estimated absolute brain size for this specimen is one of the largest reported for any felid, living or extinct. Its encephalization quotient (brain size as a fraction of the expected brain mass for a given body mass) is also larger than that of extant lions but similar to that of the other pantherines. The advent of CT scans has allowed nondestructive sampling of anatomy that cannot otherwise be studied in these extinct lions, leading to a more accurate reconstruction of endocranial morphology and its evolution.


Assuntos
Encéfalo/anatomia & histologia , Fósseis , Leões/anatomia & histologia , Crânio/anatomia & histologia , Animais , América do Norte , Tamanho do Órgão , Tomografia Computadorizada por Raios X
15.
PeerJ ; 3: e1294, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500813

RESUMO

The first finite element (FE) validation of a complete avian cranium was performed on an extant palaeognath, the ostrich (Struthio camelus). Ex-vivo strains were collected from the cranial bone and rhamphotheca. These experimental strains were then compared to convergence tested, specimen-specific finite element (FE) models. The FE models contained segmented cortical and trabecular bone, sutures and the keratinous rhamphotheca as identified from micro-CT scan data. Each of these individual materials was assigned isotropic material properties either from the literature or from nanoindentation, and the FE models compared to the ex-vivo results. The FE models generally replicate the location of peak strains and reflect the correct mode of deformation in the rostral region. The models are too stiff in regions of experimentally recorded high strain and too elastic in regions of low experimentally recorded low strain. The mode of deformation in the low strain neurocranial region is not replicated by the FE models, and although the models replicate strain orientations to within 10° in some regions, in most regions the correlation is not strong. Cranial sutures, as has previously been found in other taxa, are important for modifying both strain magnitude and strain patterns across the entire skull, but especially between opposing the sutural junctions. Experimentally, we find that the strains on the surface of the rhamphotheca are much lower than those found on nearby bone. The FE models produce much higher principal strains despite similar strain ratios across the entirety of the rhamphotheca. This study emphasises the importance of attempting to validate FE models, modelling sutures and rhamphothecae in birds, and shows that whilst location of peak strain and patterns of deformation can be modelled, replicating experimental data in digital models of avian crania remains problematic.

16.
PeerJ ; 3: e1093, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26213655

RESUMO

Ornithomimosaur dinosaurs evolved lightweight, edentulous skulls that possessed keratinous rhamphothecae. Understanding the anatomy of these taxa allows for a greater understanding of "ostrich-mimic" dinosaurs and character change during theropod dinosaur evolution. However, taphonomic processes during fossilisation often distort fossil remains. Retrodeformation offers a means by which to recover a hypothesis of the original anatomy of the specimen, and 3D scanning technologies present a way to constrain and document the retrodeformation process. Using computed tomography (CT) scan data, specimen specific retrodeformations were performed on three-dimensionally preserved but taphonomically distorted skulls of the deinocheirid Garudimimus brevipesBarsbold, 1981 and the ornithomimids Struthiomimus altusLambe, 1902 and Ornithomimus edmontonicusSternberg, 1933. This allowed for a reconstruction of the adductor musculature, which was then mapped onto the crania, from which muscle mechanical advantage and bite forces were calculated pre- and post-retrodeformation. The extent of the rhamphotheca was varied in each taxon to represent morphologies found within modern Aves. Well constrained retrodeformation allows for increased confidence in anatomical and functional analysis of fossil specimens and offers an opportunity to more fully understand the soft tissue anatomy of extinct taxa.

17.
J Anat ; 225(2): 209-19, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24925465

RESUMO

Pliosaurs were among the largest predators in Mesozoic seas, and yet their functional anatomy and feeding biomechanics are poorly understood. A new, well-preserved pliosaur from the Kimmeridgian of Weymouth Bay (UK) revealed cranial adaptations related to feeding. Digital modelling of computed tomography scans allowed reconstruction of missing, distorted regions of the skull and of the adductor musculature, which indicated high bite forces. Size-corrected beam theory modelling showed that the snout was poorly optimised against bending and torsional stresses compared with other aquatic and terrestrial predators, suggesting that pliosaurs did not twist or shake their prey during feeding and that seizing was better performed with post-symphyseal bites. Finite element analysis identified biting-induced stress patterns in both the rostrum and lower jaws, highlighting weak areas in the rostral maxillary-premaxillary contact and the caudal mandibular symphysis. A comparatively weak skull coupled with musculature that was able to produce high forces, is explained as a trade-off between agility, hydrodynamics and strength. In the Kimmeridgian ecosystem, we conclude that Late Jurassic pliosaurs were generalist predators at the top of the food chain, able to prey on reptiles and fishes up to half their own length.


Assuntos
Ingestão de Alimentos/fisiologia , Fósseis , Comportamento Predatório/fisiologia , Répteis/anatomia & histologia , Crânio/anatomia & histologia , Animais , Força de Mordida , Análise de Elementos Finitos , Músculo Esquelético/anatomia & histologia , Especificidade da Espécie , Estresse Mecânico , Tomografia Computadorizada por Raios X , Reino Unido
18.
Naturwissenschaften ; 101(5): 453-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24756202

RESUMO

Pliosaurs were a long-lived, ubiquitous group of Mesozoic marine predators attaining large body sizes (up to 12 m). Despite much being known about their ecology and behaviour, the mechanisms they adopted for prey detection have been poorly investigated and represent a mystery to date. Complex neurovascular systems in many vertebrate rostra have evolved for prey detection. However, information on the occurrence of such systems in fossil taxa is extremely limited because of poor preservation potential. The neurovascular complex from the snout of an exceptionally well-preserved pliosaur from the Kimmeridgian (Late Jurassic, c. 170 Myr ago) of Weymouth Bay (Dorset, UK) is described here for the first time. Using computed tomography (CT) scans, the extensive bifurcating neurovascular channels could be traced through the rostrum to both the teeth and the foramina on the dorsal and lateral surface of the snout. The structures on the surface of the skull and the high concentrations of peripheral rami suggest that this could be a sensory system, perhaps similar to crocodile pressure receptors or shark electroreceptors.


Assuntos
Ossos Faciais/irrigação sanguínea , Ossos Faciais/inervação , Fósseis , Répteis/anatomia & histologia , Animais , Ossos Faciais/diagnóstico por imagem , Sensação/fisiologia , Tomografia Computadorizada por Raios X , Reino Unido
19.
PLoS One ; 8(5): e65295, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724135

RESUMO

A number of extant and extinct archosaurs evolved an elongate, narrow rostrum. This longirostrine condition has been associated with a diet comprising a higher proportion of fish and smaller prey items compared to taxa with broader, more robust snouts. The evolution of longirostrine morphology and a bulbous anterior rosette of premaxillary teeth also occurs in the spinosaurid theropod dinosaurs, leading to suggestions that at least some members of this clade also had a diet comprising a notable proportion of fish or other small vertebrates. Here we compare the rostral biomechanics of the spinosaurs Baryonyx walkeri and Spinosaurus c.f. S. aegyptiacus to three extant crocodilians: two longistrine taxa, the African slender-snouted crocodile Mecistops cataphractus and the Indian gharial Gavialis gangeticus; and the American alligator Alligator mississippiensis. Using computed tomography (CT) data, the second moments of area and moments of inertia at successive transverse slices along the rostrum were calculated for each of the species. Size-independent results tested the biomechanical benefits of material distribution within the rostra. The two spinosaur rostra were both digitally reconstructed from CT data and compared against all three crocodilians. Results show that African slender-snouted crocodile skulls are more resistant to bending than an equivalent sized gharial. The alligator has the highest resistances to bending and torsion of the crocodiles for its size and greater than that of the spinosaurs. The spinosaur rostra possess similar resistance to bending and torsion despite their different morphologies. When size is accounted for, B. walkeri performs mechanically differently from the gharial, contradicting previous studies whereas Spinosaurus does not. Biomechanical data support known feeding ecology for both African slender-snouted crocodile and alligator, and suggest that the spinosaurs were not obligate piscivores with diet being determined by individual animal size.


Assuntos
Jacarés e Crocodilos/fisiologia , Dinossauros/fisiologia , Extinção Biológica , Comportamento Alimentar/fisiologia , Jacarés e Crocodilos/anatomia & histologia , Animais , Tamanho Corporal , Dinossauros/anatomia & histologia , Processamento de Imagem Assistida por Computador , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...